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ABSTRACT

Summary: Herein we introduce flowFit, a Bioconductor package de-

signed to perform quantitative analysis of cell proliferation in tracking

dye-based experiments. The software, distributed as an R

Bioconductor library, is based on a mathematical model that takes

into account the height of each peak, the size and position of the

parental population (labeled but not proliferating) and the estimated

distance between the brightness of a cell and the brightness of its

daughter (in which the dye is assumed to undergo a 2-fold dilution).

Although the algorithm does not make any inference on cell types,

rates of cell divisions or rates of cell death, it deconvolutes the

actual collected data into a set of peaks, whereby each peak corres-

ponds to a subpopulation of cells that have divided N times. We

validated flowFit by retrospective analysis of published proliferation-

tracking experiments and demonstrated that the algorithm predicts

the same percentage of cells/generation either in samples with dis-

cernible peaks (in which the peaks are visible in the collected raw data)

or in samples with non-discernible peaks (in which the peaks are fused

together). To the best of our knowledge, flowFit represents the first

open-source algorithm in its category and might be applied to numer-

ous areas of cell biology in which quantitative deconvolution of track-

ing dye-based experiments is desired, including stem cell research.

Availability and implementation: http://www.bioconductor.org/

packages/devel/bioc/html/flowFit.html

(Bioconductor software page). http://www.bioconductor.org/pack-

ages/2.13/bioc/vignettes/flowFit/inst/doc/HowTo-flowFit.pdf (package

vignette). http://rpubs.com/tucano/flowFit (online tutorial).

Contact: pierpaolo.difiore@ifom.eu or davide.rambaldi@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

In cell proliferation-tracking experiments, cells are stained—

before being cultured under various conditions—with a fluores-

cent dye to follow proliferation kinetics. At each mitosis, the dye
is roughly equally divided between daughter cells, so that each

daughter is about half as fluorescent as the mother. At any given

moment, therefore, the fluorescence intensity of a cell bears wit-

ness to its divisional history when compared with the intensity of

the parental population.

In a typical experimental pipeline, cells are first labeled with a

tracking dye, then allowed to proliferate (frequently in the pres-

ence of specific stimuli) and finally analyzed by flow cytometry
by collecting data for (i) unlabeled cells (used as a negative con-

trol), (ii) unstimulated labeled cells (the non-proliferating popu-
lation) and (iii) sample(s) of labeled and stimulated cells (the

proliferating populations). If the characteristics of the logarith-

mic amplifier on the flow cytometer are known, it is possible to
derive, from a histogram of fluorescence intensity, the proportion

of cells that have undergone any particular number of divisions
(Givan et al., 1999; 2004). Generally, a flow cytometer with 1024

channels (channels range) represents a nominal range of 4 log

decades.
Several fluorochromes have been used to track cell prolifer-

ation (Parish, 1999), including DNA-binding fluorescent

dyes (Hoechst 33342, thiazole orange), cytoplasmically

distributed fluorescent dyes (calcein, 20,70-bis-(2-carboxyethyl)-
5(6)-carboxyfluorescein), covalent coupling fluorescent dyes

(Carboxyfluorescein succinimidyl ester, fluorescein isothiocyan-
ate) and membrane-inserting fluorescent dyes (PKH26, CellVue

Lavander). Although each dye displays advantages and disad-

vantages for individual experimental purposes [reviewed in
(Parish, 1999)], a common problem is represented by the quan-

tification of the fluorescence signal: under optimal conditions
some dyes [e.g. carboxyfluorescein diacetate succinimidyl ester

(CFSE)] form separate peaks defining different proliferative gen-

erations, whereas others (e.g. PKH26) do not (Givan et al.,
2004). A good proliferation-tracking algorithm should be able

to give similar results in both cases.
Here we introduce flowFit, an R (R Development Core Team,

2012) Bioconductor library (Gentleman et al., 2004) that fits a set
of peaks (corresponding to different generations of cells) to the

histogram of fluorescence intensity acquired during a fluores-

cence-activated cell sorting (FACS) experiment. The package is
integrated with the Bioconductor libraries used for the analysis

of flow cytometry datasets: flowCore (Hahne et al., 2009) and
flowViz (Sarkar et al., 2008). The performance of flowFit was

evaluated by the retrospective analysis of a published dataset of

dye-tracking experiments (Quah and Parish, 2012), in which
lymphocytes were stained with three different proliferation-

tracking dyes: CFSE, cell proliferation dye eFluor 670 (CPD)
and CellTrace Violet (CTV). In particular, we meta-analyzed a

subpopulation of CD4þ lymphocytes labeled with the three dif-

ferent staining reagents. The three samples were allowed to pro-
liferate under identical growth conditions; however, differences

in the characteristics of the dyes yielded rather different*To whom correspondence should be addressed.
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fluorescence histograms with different peak definitions (Quah
and Parish, 2012). FlowFit was able to deconvolute equally

well in all situations and to estimate the same percentage of

cells per generation under all conditions.

2 METHODS

2.1 Model

The proliferation-fitting algorithm uses an R implementation of the

Levenberg–Marquardt algorithm (Elzhov et al., 2012) to fit a set of N

peaks to the histogram of the fluorescence intensity from the acquired

flow cytometry data file (FCS file). The Levenberg–Marquardt algorithm

provides a numerical solution to the problem of minimizing a function

over a space of parameters. It is an iterative technique that locates the

minimum of a multivariate function. The ‘minimum’ is expressed as the

sum of the squares of non-linear real-valued functions (Levenberg, 1944).

The algorithm adjusts the function parameters to reduce the sum of

squares (residuals) between the real data and the model. When the current

solution is far from the initial guess of parameters, the algorithm behaves

as a steepest descendent method. When the current solution is close to the

correct solution, it becomes a Gauss–Newton method (Björck, 1996). The

proliferation-fitting algorithm fits an initial single peak on the parental

population (cells labeled and unstimulated), according to this formula:

a2e
ðx� �Þ2

2s2
ð1Þ

where a2 is proportional to the height of the peak, � is the peak position

on the FACS scale and s is proportional to the peak size (for the parental

population, it corresponds to the variance in the initial staining). The

formula for the next peak (corresponding to the cells that have divided

once) will be:

b2e
ðx� ð��DÞÞ2

2s2
ð2Þ

where b2 is proportional to the height of the peak, and D is the distance

between two generations of cells.

The distance between two cell generations is defined as the distance

between a mother cell and its progeny (that contains half of the amount

of dye present in the mother). This distance is constant on a logarithmic

scale and depends on the number of data points analyzed by the FACS

instrument and on the range of log decades.

It is possible to convert the FACS fluorescence intensity (FFI) re-

corded by the instrument into the relative fluorescence intensity (RFI)

expressed in molecules of equivalent fluorochrome (Spherotech, 2012)

using the following formula:

RFI ¼ 10
FFI�l
c ð3Þ

The inverse formula can be used to convert RFI to FFI:

FFI ¼
c�logðRFIÞ

ðl�logð10ÞÞ
ð4Þ

where:

(1) RFI is the relative fluorescent intensity

(2) FFI is the fluorescence intensity on the FACS scale

(3) l is the number of log decades in the FACS instrument

(4) c is the number of data points (channels) in the instrument

Using these formulas, it is possible to estimate the spacing between

generations of cells on the FACS instrument scale: we first convert the

peak position of the parental population (unstimulated population) into

RFI, then we calculate the RFI of the first-generation cells (RFI/2) and,

finally, we convert back the RFI into FFI; the difference between FFI of

the parental population and FFI of the first generation of cells represents

the distance between generations (D). In the flowFit library, this spacing

is automatically computed with the function generationsDistance. The

number of log decades on the instrument can be estimated by converting

the linear scale of the detector into a log scale:

l ¼ logðRÞ ð5Þ

where R is the acquisition resolution (data range for the detector).

The proliferationFitting and parentFitting functions automatically com-

pute the log decades from the keywords in the FCS file or using the

logarithm of R[log(R)]. If the functions find a ‘log decades’ keyword

for the current detector in the FCS file, they use the value in the keyword;

otherwise, log decades are estimated from the detector acquisition

resolution.

The algorithm automatically computes the number of peaks to be

fitted on the proliferating population using the data range for the de-

tector: first, the distance between two generations of cells is estimated

using the generationsDistance function; then the maximum number of

peaks that can be fitted on the FACS instrument scale is estimated

with the following formula:

N ¼
D

c
ð6Þ

where:

(1) N is the number of peaks to fit on the dataset

(2) D is the distance between two generations of cells

(3) c is the number of data points (channels) in the instrument

The formula for a model with three peaks will be:

M ¼ a2e
ðx� �Þ2

2s2
þ b2e

ðx� ð��DÞÞ2

2s2
þ c2e

ðx� ð�� 2DÞÞ2

2s2
ð7Þ

where the parameters a, b and c are proportional to the height of the

peaks.

In the ‘fixed model’ (options fixedModel¼TRUE), the Levenberg–

Marquardt algorithm estimates the height of each peak but allows the

user to keep one or more of these variables constant: parental peak pos-

ition (�), parental peak size (s) and the distance between two generations

(D); the variables added to the list of fixedPars will be kept constant

during the algorithm iterations. In the ‘dynamic model’ (options

fixedModel¼FALSE), the Levenberg–Marquardt algorithm uses as par-

ameters all the variables in the model. In general terms, the dynamic

model best suits the analysis of samples showing discernible peaks.

Conversely, when the sample features poorly defined or no discernible

peaks and the model is unable to accommodate the peaks, it is preferable

to keep those variables fixed.

Once the height of each peak is estimated, it can be used to estimate the

number of cells per generation through a numerical integration of (7):

Iall ¼

Z W

v

M ð8Þ

where v and W are the lower and upper limits of the FACS instrument

scale, respectively. For each generation, the number of cells in the peak

can be computed through another numerical integration:

Ii ¼

Z w

v

h2i e
ðx� ð�� ði� 1ÞDÞÞ2

2s2

� �
ð9Þ

and the percentage of cells in a peak can be estimated as:

Pgi ¼
Ii
Iall
� 100 ð10Þ

To evaluate the proliferation in the sample, flowFit uses the

proliferationIndex function: the proliferation index is calculated as the

sum of the cells in all generations—including the parental—divided by
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the computed number of original parental cells theoretically present at the

beginning of the experiment (Munson, 2010). The proliferation index is a

measure of the fold increase in cell number in culture, over the course of

the experiment: XI
i¼0

Ni

XI
i¼0

Ni

�
2i

ð11Þ

where i is the generation number (parental generation¼ 0). In the absence

of proliferation, when all cells are in the parental generation, the formula

becomes

N0

N0=20
¼ 1 ð12Þ

defining the lower limit of the proliferation index.

Fig. 1. The flowFit pipeline: (a) The flowCore methods are used to import and transform the FACS data. When the raw data are gated and transformed,

it is possible to apply the proliferation-fitting algorithm. (b) Graphical output example for the function parentFitting: the position and size of the first

peak are established. (c) Graphical output example for the function proliferationFitting: the estimated parental peak position and size are used to perform

a fit on the proliferating populations
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2.2 Implementation

The flowFit is distributed in the R software language (R Development

Core Team, 2012) as a Bioconductor (Gentleman et al., 2004) package.

The package is freely available and distributed under the Artistic 2.0

License (Open Source Initiative, 2013). The flowFit package is composed

of two main functions (parentFitting and proliferationFitting) and five

secondary functions (logTicks, proliferationIndex, generationsDistance,

proliferationGrid and getGenerations).

The typical pipeline involves a first step (Fig. 1a) where the FACS raw

data are imported, transformed and gated with the flowCore library

(Hahne et al., 2009). By applying the function parentFitting to the

sample representing the parental population, the position and size of

the first peak are then established (Fig. 1b). Finally, the estimated par-

ental peak position and size are used to perform a fit on the proliferating

population with the function proliferationFitting (Fig. 1c). The position

and size of the parental population can be used as an initial guess for the

Levenberg–Marquardt algorithm (dynamic model); in this case, the algo-

rithm will adjust these variables, in the proliferating population, as

needed to achieve optimal fitting. Alternatively, position and size of the

parental population can be used as constants (fixed model). In general,

when the input data have poorly defined cell division peaks, the fixed

model is preferable.

Because tracking dyes are partitioned roughly equally between daugh-

ter cells, it is possible to assume that the size of cell division peaks in the

data is mainly due to the variance in the initial staining. For this reason,

the proliferation-fitting algorithm uses the width of the parental peak to

calculate the size of each peak in the final population [s in Equation (7)].

FlowFit depends on flowCore, a Bioconductor package that provides

data structures and basic functions to deal with FCS data. The user

will load the data and gate them with the flowCore functions to select

the correct population and to remove aggregates and debris. After

these preprocessing steps, the user will use the flowFit library to perform

the proliferation fitting. The algorithm is not able to detect ploidy

patterns.

3 RESULTS

The proliferation-fitting algorithm was tested by retrospective

analysis of a published dataset consisting of three samples of

mouse lymphocytes stained with CFSE, CTV and CPD (Quah

and Parish, 2012). We focused on the raw data used to generate

Figure 2a of the original paper. This subset of raw data contains

four samples:

(1) CD4þ non-stimulated lymphocytes labeled with CFSE,

CPD and CTV (parental population)

(2) CD4þ lymphocytes labeled with CFSE and stimulated

(3) CD4þ lymphocytes labeled with CPD and stimulated

(4) CD4þ lymphocytes labeled with CTV and stimulated

Fig. 2. The flowFit on the Quah and Parish dataset. (a) Histogram plots and fittings for the unstimulated (parental) populations. (b) Histogram plots for

stimulated populations (stained with CFSE, CTV and CPD, as indicated on the top of the figure). (c) Bar graphs representing the distribution of cells/

generation in the three samples
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The datasets, already gated for CD4þ lymphocytes, were

log10 transformed after truncation at 1. Then, we performed
three parentFitting on the ‘parental sample’ to establish the

position and size of the parental population for the three dyes

(Fig. 2a). Using the parental peak position and size as a best

guess, we performed a proliferationFitting with the dynamic

model on the CFSE and CTV samples. In the CPD sample,

the stimulated population did not display well-separated peaks,

at variance with the CTV and CFSE samples. Thus, for the CPD

sample, we used a fixed model (proliferationFitting with

fixedModel¼TRUE), keeping the parental peak position fixed

(Fig. 2b and c). Finally, we compared the percentage of cells per

generation in the three samples and evaluated the concordance

among the fittings. Using the chi-squared test, we did not observe

any significant difference in the distribution of cells per gener-

ation among the three estimates (p¼ 1), arguing that the algo-

rithm is correctly estimating the percentage of cells per

generation in the three samples (Supplementary Fig. S1).

Altogether, the proliferationFitting analysis performed on the

datasets published by Quah and Parish, which yielded similar

results compared with those of the original study, argues for

the suitability of flowFit to the analysis of cell proliferation in

tracking dye experiments with either poorly or well-discernible

peaks, based on the dual possibility to fit them, respectively, with

the dynamic model or with the fixed model.
We also performed an in silico analysis to benchmark the per-

formance of the algorithm with random samples (Table 1 and

Supplementary Materials Section 3, including Supplementary

Figs. S7–S21) for the dynamic and fixed models. In general,

the dynamic model performed well with samples where the par-

ental peak size (that corresponds to the variance in the initial

staining) is small and the proliferating population forms well-

separated peaks. The fixed model, on the other hand, performs

well also with samples with a poorly defined cell division peaks

(cf: Supplementary Figs. S8 and S14).

4 DISCUSSION

The objective of this work was to provide an open-source algo-

rithm to quantify the proliferation of cells in tracking dye experi-

ments. Of note, although the proliferation-fitting algorithms

currently available for this type of analyses (ModFit LTTM,

FCS Express and FlowJO) are commercial software, flowFit is

already publicly available and published with the Artistic 2.0

License in the Bioconductor R framework. We provided statis-

tical demonstration of the quality of the fitting with both in silico

analysis and real dataset analysis. In particular, we demonstrated

the intrinsic versatility of flowFit in providing reliable results in

the analysis of samples with both discernible and non-discernible

peaks. At variance with ModFit LTTM, which uses a statistical

analysis of the fluorescence histogram to identify potential peaks

and a Gaussian model for the single peak, flowFit uses a

Levenberg–Marquadt algorithm to minimize the difference be-

tween the observed data and the model, and uses a non-Gaussian

formula (1) to define a peak. In addition, flowFit is fully inte-

grated in the Bioconductor R framework.
In recent years, several approaches, based on dye tracking,

have been developed to identify and isolate adult stem cells

(SCs) from normal and tumor tissues (e.g. Cicalese et al., 2009;

Pece et al., 2010). These methodologies rely on the fact that—in

the normal adult SC compartment—SCs divide asymmetrically

to generate two daughter cells with opposite proliferative and

differentiative fates: one of the two daughter cells retains the

SC fate and withdraws into quiescence, whereas the other be-

comes a progenitor and enters a tumultuous phase of repeated

symmetric divisions, required to expand the progenitor compart-

ment, followed by terminal lineage differentiation. One charac-

teristic of the SC compartment in cancer is that the cancer SCs

tend to skip rounds of asymmetric division, in favor of symmet-

ric divisions, after which both daughters divide again (Morrison

and Kimble, 2006). This leads to an expansion of the SC com-

partment. The ‘rate of skipping’ seems to be higher in poorly

differentiated more aggressive tumors (Cicalese et al., 2009; Pece

et al., 2010). Methodologies to follow the kinetics of SC division

in vitro and to compare the rate of symmetric versus asymmetric

divisions are needed if we want to understand the biological

bases of homeostasis of normal SC compartments and of how

expansion of the SC compartment drives cancer growth and

aggressiveness. We envision this as one of the major areas of

application for flowFit. To this aim, the integration of flowFit

with a stochastic model of cell proliferation based on a Gillespie

algorithm will likely be required to analyze in real tumor tissues

the proliferation kinetics of cancer SCs compared with that of

their tumor progeny, and to compare proliferation data from

these populations with relevant theoretical models of prolifer-

ation (for instance, models of asymmetric versus symmetric

mode of division in the cancer SC versus the transient-amplifying

compartment of progenitors). This approach will probably be

instrumental to identifying parameters in the stochastic model

able to yield the best overlap between real data and simulations.
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Table 1. In silico benchmark results

Benchmark Varying peak size Random samples (%)

Dynamic model 0.17 80.5

Fixed model 0.4 100

Note: Summary of in silico analysis: random samples with different levels of division

peak quality (Supplementary Section 2.1). The maximum peak width that gives

reliable results (Column: varying peak size, 017) correspond to a parent population

with 75% of the events distributed across 25.7 channels (in a FACS with 1024

channels and 4 log decades), a ‘peak size’ of 0.4 corresponds to a parent population

peak with 75% of the events distributed across 61.7 channels (in a FACS with 1024

channels and 4 log decades); random samples with different distribution of cells per

generation (Supplementary Section 2.2): the percentage of samples that gives reliable

results is depicted (Column: random samples).
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